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We calculate the many-body wave function structure of a strongly correlated electron system in a quantum
dot placed into a magnetic field. The exact numerical results show the formation of electron-vortex complexes
in accordance with the composite fermion picture. We show that the electron-vortex distance is a universal
function shared by various vortex shells and quantum dots containing different numbers of electrons. This
distance is a quadratic function of the filling factor. In contrast, the approximate rotating-electron-molecule
approach fails to capture this universality and predicts an electron-vortex distance linear in the filling factor.
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I. INTRODUCTION

Successful identification of quasiparticles that faithfully
represent collective states of matter has been a topic of ut-
most importance in condensed matter physics. One of the
recent searches for the right quasiparticle was prompted by
the discovery of the fractional quantum Hall effect,! and the
intricate pattern of fractional filling factors at which the ef-
fect is observed was elegantly accounted for in terms of the
composite fermion (CF)?3 picture that may intuitively be in-
terpreted as bound states of an electron plus an even number
of magnetic vortices.*

This CF phase is an intermediate one. At weaker magnetic
fields, corresponding to integer filling factors, one recovers
the perturbative physics of a weakly interacting electron lig-
uid. On the other hand, at stronger magnetic fields, corre-
sponding to the inverse fractional filling factors around v
~2_5 and below,>S the quantum-fluid ground state is re-
placed by an essentially classical Wigner crystal.”

The same sequence of states must also be present in con-
fined systems, i.e., quantum dots.® Here, due to the finite
number of particles, it is possible to try and to solve the
complete many-body problem by performing exact
diagonalizations.”!3 Although this method is confronted by
insurmountable computational difficulties when the system
size and interaction strength increase, an accurate treatment
of, say, N=6 particles is well within reach.

The CF theory has been successfully applied to describe
the electron states in quantum dots.>'* Alternatively, it was
proposed that strongly correlated quantum dots may be visu-
alized as collectively rotating-electron molecules (REMs). In
the strong magnetic field limit, electrons tend to crystallize
into a Wigner crystallite composed of concentric polygonal
electron rings. The electronic charge distribution may be ap-
proximated by Gaussian functions centered at the positions
of the electrons, and the circular symmetry is restored by
projection techniques. In this manner, analytic wave func-
tions were derived!® and shown to provide a more accurate
description'® than the CF formalism, in particular, in the rel-
evant filling factor range of és S %

However, the composite fermion picture was able to re-
store its credibility by resorting to perturbative schemes
based on the mixing of quasi-Landau levels.!” These calcu-
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lations bear increased computational costs and produce lower
ground state energies, and close to unity overlaps with the
exact wave functions. When applied to extended systems, the
perturbative CF schemes also predict lower energies associ-
ated with fractional quantum Hall states and the possible
persistence of this effect down to the ultralow filling factor
V=10

The comparison of the two different approaches (as well
as the prevalence of the different nature of the ground state)
has thus been mostly confined to the comparison of their
energies and overlaps of the exact and approximate wave
functions, which is global and integral characteristics. Atten-
tion to the details was limited to orbital occupations and
charge density correlation functions.

The purpose of this paper is to cast light on the issue of
formation of complex entities in quantum dots. Exact-
diagonalization studies reveal the emergence of structures
that consist of an electron and an even number of nearby
vortices and thus have the same character as the composite
fermions. We investigate the relative distribution of electrons
and vortices and uncover an important universality in the
behavior of the electron-vortex distances. This universality,
present in the exact-diagonalization calculations, is, however,
absent from the REM results.

Our paper is organized in the following way. In Sec. II,
the computational model is described, and in Sec. III, the
results are given and contrasted to the REM predictions. In
Sec. IV, we give our conclusions.

II. COMPUTATIONAL MODEL

We consider a parabolic quantum dot populated by N
=3-6 electrons in a magnetic field. The Hamiltonian is writ-
ten as

YT e 1 e
H=E{—(p,+—A,~> + = mwor]+2 (1)
i=1 2m C

2 z<j r|

Here, A, is the usual symmetric-gauge vector potential at the
position of the ith electron, w, denotes the confinement fre-
quency, and the medium parameters are the effective electron
mass m and the dielectric constant €. The number of param-
eters is greatly reduced by switching to dimensionless units,
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whereby the energies are measured in fiwy and lengths in
ly=\h/mw,. A convenient measure of the magnetic field
strength is the ratio of the cyclotron and confinement fre-
quencies y=w./w,, and the effective Coulomb interaction
strength is A=[y/ap, with ap being the effective Bohr radius.
The Hamiltonian is thus transformed into

N 2 2 N
H(h,7)=2{—%+(1+f>ﬁ}+7_L+E \
i=1

4/2 2 i<j|ri_rj|.

)

Here, L denotes the angular momentum, either an operator or
the quantum number of the corresponding rotationally sym-
metric solution.

Note that we disregard the spin degree of freedom. If a
finite Zeeman splitting is present, at high magnetic fields, the
ground states will be fully polarized. This fact only sets limi-
tations on the possible values of the angular momentum L in
a ground state. As soon as the magnetic field is sufficiently
strong to establish spin polarization, in a three-electron quan-
tum dot, these values follow the sequence of multiples of the
electron number,'® which is, L=6,9,12,15,.... A similar
pattern of multiples is observed in a five-electron quantum
dot'*—L=15,20,25,.... In a four-electron quantum dot, the
angular momentum values follow a shifted sequence,!® L
=10,14,18,..., while in a six-electron quantum dot, one
encounters'®> a competition between two configurations (a
hexagonal electron ring and a pentagonal ring surrounding a
central electron). Thus, the sequence of angular momentum
values in spin-polarized ground states is intertwined,'3

L=21,25,30,35,39,40,45,50, ... . (3)

We observe that for a parabolic confinement, the Hamil-
tonian (2) may be mapped onto the Hamiltonian without a
magnetic field by an appropriate scaling of coordinates,

r—>r[1+§]_”4. 4)

Thus, one obtains

12
H('y,)x):{l+§] H(O,)\’)—%'yL, (5)

with N =\(1+97/4)74,

In view of the above, we solve the zero-field Hamiltonian
and obtain the results by recalculating the energies and by
scaling the wave function. As in our previous work,'' we use
the value A=2 which is typical for experimentally realized
quantum dots.'>?® As a matter of fact, when a strong perpen-
dicular magnetic field is applied, the effective strength of the
Coulomb repulsion with respect to the kinetic energy is set
by the magnetic field strength rather than the Coulomb inter-
action constant. Thus, for Wigner crystallization at high mag-
netic fields, a large \ is not needed, and our results are not
sensitive to the choice of this parameter.

Having obtained the complete many-body wave function
as a function of the coordinates of all N electrons
Y(r,...,ry), we form an auxiliary quantity, further referred
to as the reduced wave function. This wave function is a
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function of the coordinates of only one electron, while the
others are pinned at certain positions r; ,

P(r) = lI’(r,r;k, ,r::,). (6)

This quantity has proven to be a successful method of
visualizing the wave function structure. While being easy to
calculate, this function serves as a correlation function and
encompasses the relative distributions of particles. The zeros
of the reduced wave function mark the positions of the mag-
netic vortices. It has become a standard tool in exact-
diagonalization based approaches, and it was used to cali-
brate the spin-density functional theory (SDFT) results.'? As
a matter of fact, the SDFT has the advantage of being much
less complex computationally and thus can be used to treat
higher particle numbers. The density-functional approach
gives no (easy) access to correlation functions; however, the
internal structure is displayed directly in the charge density
of a broken-symmetry solution.® It was shown that the posi-
tions of vortices in SDFT densities compare favorably to the
exact-diagonalization results.'> Note, however, that SDFT
vortices are not true density zeros. They are the density
minima around which currents are circulating.

When evaluating the reduced wave function, we fix the
N-1 electrons at their maximum likelihood positions. The
classical equilibrium configuration is a polygonal ring, thus
we place the N electrons at equal distances on a ring whose
radius is varied in order to obtain the maximum in |W|2.
Then, N—1 electrons are left at their positions, while the
remaining one is set to roam freely. Note that for N=6 quan-
tum dots, some of the ground states have a fivefold rotational
symmetry and consist of a five-electron ring plus an extra
electron in the center of the dot. These ground states are
easily distinguished by inspecting the corresponding charge
densities.!? In these cases, we pin the central electron as well
as all but one of those belonging to the ring.

We found that the position of the vortices does not depend
strongly on the position of the pinned electrons as long as the
electron configuration is of high probability and the vortices
are bound to the electron, i.e., v< 5. However, as we showed
previously in Ref. 11, vortex configurations corresponding to
low-probability arrangements of pinned electrons may be
very different. In fact, it is even possible to induce antivor-
tices.

III. RESULTS

The distribution of vortices in few-electron quantum dots
was discussed in Refs. 11 and 13. Let us, however, briefly
remind the reader that in a three-electron quantum dot, the
vortices always appear on a straight line drawn through the
positions of the electrons. When the number of electrons is
four or larger, the vortices appear on rays extending from the
interior of the dot through the positions of the fixed electrons
and away into the exterior. The typical distribution of vorti-
ces is sketched in Fig. 1, which is obtained for N=4 electrons
and the angular momentum L=18. Thus, as the magnetic
field strength increases, each electron is approached by two
vortices at a time, one from the interior of the dot and the
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FIG. 1. Typical distribution of electrons (crosses) and vortices
(dots). As an example, the ground state of the four-electron quan-
tum dot at L=18 is shown.

other from the exterior. The distance from the fixed electron
to the two vortices is virtually the same.

We calculate the distance d,, between one of the electrons
and the first, as well as the second nearest vortex in the
direction of the dot center in quantum dots with 3<N=<6
electrons for a number of different L values. In order to make
our results more general, we plot the distances versus the
filling factor v which in quantum dots is defined by?

_N(N— 1)

2L M

For a three-electron quantum dot, we used all allowed angu-
lar momenta in the interval 6<L=<27, thus covering the
filling factor range éi y<21. The corresponding ranges for
N=4 were 14<L <42 and 7= V$%, whereas for N=5, we
covered 20<L <65 and 1% SAS % For a six-electron quan-
tum dot, we used the angular momenta enumerated in Eq.
(3), thus the filling factors were in the range % sy< % The
results are presented in Fig. 2 as a double logarithm plot of
dey/de., the electron-vortex distance compared to the
electron-electron distance. The different symbols represent

< > o
oo b w

~

©» ZZZZ

<

1 2 3 4 5
1/v

o
~
[o=l = |
© =
-
o

FIG. 2. The distances between an electron and the closest and
the second closest vortices as a function of the inverse filling factor.
The full lines denote power-law functional fits.
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FIG. 3. The comparison of exact-diagonalization (solid lines)
and REM (dashed and dotted lines) results in a three-electron quan-
tum dot. The distances from a fixed electron and the two nearest
vortex shells are shown. Notice that in REM, the distances to the
vortices approaching from the interior (dashed lines) and exterior
(dotted lines) differ significantly.

the results for different numbers of electrons. The full lines
denote functional fits d,,/d,.=av?, with a=2.10 and 8.78,
respectively. One may clearly see that the power-law behav-
ior is the same for all numbers of electrons and may be
accurately approximated by a quadratic function of the filling
factor.

This universal behavior is not present in the results ex-
tracted from the REM approach. We demonstrate this using
the example of a three-electron quantum dot at filling factors
down to v=1/9 that correspond to the angular momenta up
to L=27. The distances between a fixed electron and the
nearest two vortices approaching from the interior (exterior)
of the dot are plotted in Fig. 3 with dashed (dotted) lines and
compared to the exact-diagonalization results indicated by
solid lines.

One sees that there is little in common between the two
sets of results. REM predicts that the vortices approaching
the pinned electron form the interior of the dot (dashed lines
in Fig. 3) are significantly closer than their counterparts in
the exterior (dotted lines in Fig. 3). This difference is decay-
ing very slowly with magnetic field strength and persists
even at extremely low filling factors. Also, the electron-
vortex distances demonstrate a much weaker dependence on
the inverse filling factor. In fact, the asymptotical behavior is
dey/d..~ v, which, in the case of three electrons in a dot,
may be calculated analytically since an expression for the
position of vortices is explicitly known.!! These facts dem-
onstrate that in REM, a vital part of the electron-vortex cor-
relation is overlooked.

We make a further observation that the power-law prefac-
tors scale approximately as n?, with n being the shell index.
This behavior—as it may be seen from the following
argument—is consistent with the power law d.,/d.. ~ v* and
the intuitive interpretation of composite fermions as bound
electron-vortex complexes.*

The number of vortices in a quantum dot is increasing
proportionally to the magnetic field strength, that is, to v=!.
According to the composite fermion picture, the number of
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vortices found in the vicinity of a given electron (and thus
forming a complex with it) must also grow linearly with v,
Now, let us denote d.,(n, v) the distance to the vortices of the
nth shell and choose a certain fraction of the interelectron
distance ad,. to represent the composite fermion radius in
the sense that all the vortices sitting closer than this distance
from the fixed electron are considered belonging to it. Then,
the number of vortices inside this range is found by solving
the equation d.,(n,v)/d.(n,v)=a for the number of the
shell that is just on the boundary. In order to be able to obtain
the desired solution n ~ v, one must require that the function
describing the distances be a function of the ratio n/wv. It
follows then that the dependences describing the distances as
a function of the filling factor and as a function of the shell
index are not independent, and the proportionality d.,/d..
~ 172 implies d,,/d..~n>.

In order to verify that the observed electron-vortex com-
plexes are indeed well defined, let us also look at the vortex
distribution statistics. In contrast to our previous calculation,
the radius of the electron ring is now not fixed but is allowed
to have any value with probability (weighting factor) propor-
tional to |W(r,,...,ry)|* with all the electrons placed equi-
distantly on a ring. The ensuing statistical distribution is de-
picted in Fig. 4 for two values of the filling factor in a three-
electron quantum dot. We see that as the angular momentum
of the considered state increases, the probability density de-
velops narrow peaks, thus, the vortices near the fixed elec-
trons become well defined.

IV. CONCLUSIONS

In conclusion, we performed a microscopic exact-
diagonalization calculation with the purpose to investigate
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FIG. 4. The statistical distribution of electron-vortex distances
in a three-electron quantum dot for two values of the angular
momentum.

the structure of the many-body wave function of a strongly
interacting electronic system. We were able to obtain results
that provide quantitative information on the internal structure
of the electron-vortex complexes forming in quantum dots. A
universal, which is independent of the number of electrons,
behavior of the electron-vortex distance as a function of the
filling factor and the vortex shell number is disclosed. There-
fore, we believe that our main result that the distance be-
tween the electron and the vortex scales as d~ (n/v)? is also
valid in an infinite two-dimensional electron gas.
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